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PREPARATIVE.LlV-LASER PHOTOCHEMISTRY OF THE AZOALKANE SPIR0(2,3-DIAZABICYCLO- 

r2,2,11HEPT-2-ENE-7',1-CYCLOPROPANE): 

TRAPPING OF THE 1,4-DIRADI~AL ~-(~-CY~LO~ENTENYL)ETHYL BY MOLECULAR OXYGEN 

Waldemar ADAM*, Klaus HANNEMANN and Peter HUSSEL' 

Institut fUr Organische Chemie, Universitat Wiirzburg, D-8700 WUrzburg, West Germany 

SUMMARY: Photo-extrusion of nitrogen from the azoalkane 1 in the presence of molecular oxygen 
-sides the hydrocarbons 3 and !S! the endoperoxide IQ and hydroperoxide 11, the former via 
trapping of the 1,4-diradical 2 by triplet oxygen, 
with singlet oxygen. 

the latter by ene-reaction-of hydrocarbon 2 

The photolysis of the azoalkane i affords the two hydrocarbons spiro(bicyclo[Z.l.O]pentane- 

5',1-cyclopropane) (3) and bicyclo[3.2.0]hept-l-ene (z), postulated to be derived from the 1,3- 

diradical spiro[2.4]hepta-4,7-diyl (2) and the 1,4-diradical 2-(3-cyclopentenyl)ethyl (4), 

respectively, as illustrated in Eq.l:? Direct photolysis gave predominantly the cyclization 

product 2, while benzophenone-sensitized photolysis gave mainly the rearranged product 5. To 
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rationalize this spin state selectivity, it was argued' that in its singlet state the 1,3- 

diradical g preferred cyclization into 3, but in its triplet state ring-opening to the 1,4- 

diradical 4 predominated, followed by cyclization into 2. Stereolabeling experiments of the 

cyclopropane ring in azoalkane 1 showed that the intervention of the 1,4-diradical 4 was 

plausible. 

The recent success of trapping 1,3-diradicals 12 - 1$2'3 and 1,4-diradicals 12 - 1i4 by 

molecular oxj#n to form of the corresponding peroxides encouraged us to apply this useful 
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detected, the 1,3-diradical ; must be significantly shorter lived (about IO- to IOO-fold) than 

the 1,4-diradical 4. Trapping of diradicals by oxygen is essentially diffusion controlled, 

within the confines of spin statistics as evidenced by the measured bimolecular rate constantk= 

2.4 x IO' m-'set -'.I' Thus, under the trapping conditions employed here, the lifetime (T) of 

the 1,4-diradical 2 must be at least 1 nsec and consequently that of the 1,3-diradical 2 less 

than 0.1 nsec, possibly as short as 0.01 nsec. 

Of the two possible trapping routes 4 -+ H + Ap and 9 -f 2 -f 12 (Eq.1) clearly the latter 

is preferred in view of the allylic stabilization in the 1,6-diradical 2, which is absent in 

the 1,6-diradical 8. However, the latter could in principle arise via the path 2 -+ $ + g. In 

view of the fact that the rate constant of the cyclopropylcarbinyl rearrangement is only 

2.0 x IO8 see-! 5 the ring-opening of the 1,5-diradical $ is much too slow compared to oxygen 

trapping and cyclization. We should have detected endoperoxide z under the conditions employed 

here. Thus, the 2 + $ * 8 -+ 12 route cannot be important because the 1,3-diradical 2 is too 

short-lived on account of its facile ring-opening to the 1,4-diradical 2. The gain in allylic 

stabilization and the release in cyclopropane strain must be responsible for the very fast 

(ca. IO" set-') ring-opening 2 + 4. - = 

The present investigation demonstrates that diradical trapping by molecular oxygen under 

laser photolysis conditions provides a powerful mechanistic tool for characterizing such elu- 

sive intermediates and estimating their lifetimes. Particularly advantageous for this purpose 

is the monochromatic and intense light output of the argon ion laser 
12 , optimal requisites 

for generating and trapping diradical intermediates. 
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